进行此项研究的凯莉·罗伯茨和同事指出,生物炭不是一般的木炭,是一种碳含量极其丰富的木炭。它是在低氧环境下,通过高温裂解将木材、草、玉米秆或其它农作物废物碳化。早在几百年前,亚马逊印第安人就会将生物炭和有机质掺入土中,创造出肥沃的黑土,今天这种木炭被称为生物炭(biochar),用植物废料,而非森林里的树木制成。
成果作用
这项研究涉及生物炭的“生命周期分析”,它的形成过程对减缓全球变暖所起的作用,以及使用它可能产生的影响。研究结果表明,制造生物炭是一种固定二氧化碳的经济可行的方式,不仅固化了树木和作物内已吸收的二氧化碳,其产物“生物碳”保存在土壤中,几千年都不会发生变化,生产可再生能源的同时,还提高了土壤肥力,提高农作物产量。生物炭可以被埋入废弃煤矿,或耕种时埋入土壤中。生物炭填埋还有利于改善土壤排水系统,并将80%左右的诸如一氧化氮和甲烷等温室气体封存在土壤中,阻止其排放到大气中。
现代方法
制作生物炭的现代方法是在低氧环境下用高温加热植物垃圾,使其分解。日前,气候专家找到了更清洁环保的方式,进行工业规模二氧化碳固定,利用巨型微波熔炉将二氧化碳封存在“生物炭”中,然后进行掩埋。这种特制“微波炉”将成为战胜全球变暖的最新利器。因此,该技术每年可以减少向空气中排放几十亿吨二氧化碳。日前不少人将生物炭技术视为目前为止解决气候变暖问题的“尚方宝剑”,一种“气候变化减缓”战略和恢复退化土地的方式。有些专家甚至声称,生物炭可吸收如此多的二氧化碳,以至地球能恢复到工业化之前的二氧化碳水平。
研究前景
1、可将碳元素锁在土壤内达数百年
植物的腐烂自然而然会令土壤中含有大量的碳元素。但是这些碳相对而言是不稳定的,受气候影响很大。一旦遇到像农耕这样的变化,土壤就会释放出二氧化碳。这使得它们既是碳源、又是碳汇。因此,用土壤来锁定碳元素的想法对气候学家而言没有丝毫的吸引力。
生物炭与土壤锁碳的不同之处在于,生物炭可以稳定地将碳元素锁住长达数百年。其中的碳元素被矿化后很难再分解。更重要的是,除了它所具备的土壤改良功能外,其生产过程中产生的一些副产品更是具有很高的经济吸引力。
生产过程中,大约1/3转化为生物炭,1/3转化为可用于燃烧发电的合成气,还有1/3则形成原油替代品。这种替代品虽然无法用作运输燃料,但却可以用来制造塑料。因此澳大利亚著名的探险家、自然学家提姆·富兰纳瑞认为生物炭的这些特性“使我们能够同时解决三四个重大危机:气候变化危机,能源危机,以及食品和水资源危机。”使用生物炭不仅能够使土壤肥沃,还能够帮助土壤保持水分。
2、能有效减少空气中碳含量
据全球碳计划统计,2000到2007年,人类排放到大气中的二氧化碳中每年有54%,约48亿吨,被陆地和海洋中的碳汇(例如森林和海洋中的浮游生物等)所吸收。然而每年仍然有大约40亿吨的剩余的碳需要我们想办法去降低或者吸收。此外,由于陆地和海洋的变暖,天然碳汇的吸收量正在下降,这就意味着我们要么付出更大的努力减少空气中的碳含量,要么停止向空气中排放碳。
变废为宝
三种可行的方式
1、集中化
——某一地区的所有生物质废料都被送到中央处理厂进行集中处理,目前美国和加拿大的公司普遍采用这种方式;
2、非集中化方式
——每个农户或小型农户联合体拥有属于自己的技术含量相对较低的高温分解炉。
3、流通的方法
一辆装有高温分解设备的合成气动力车走乡串户,将制好的生物炭给农户使用,将生物油收集起来,送到精炼厂将其变成可供车辆使用的液态生物燃料,这种方法可能更为可行。
管理与可持续发展研究所指出,在巴西,甘蔗的顶部一般在田间就地焚烧,而制糖产生的甘蔗渣可以被有效地转化为生物炭。据估计,巴西每年收获4亿6千万吨甘蔗,其中约2亿3千万吨可以用来进行高温分解制造生物炭。
实践过程
德国宾根的污水处理厂中,传送带将半干的污水流送入钢容器中,空气中散布着污泥成熟的气味。污水通过容器变成闪亮的黑色颗粒,接着在经过这种短暂的生态“炼金术”处理之后,污物最终变成了木炭,埋藏于地下。将碳封存,防止其进入大气。 该技术的支持者表示,该方式储存碳非常有效。未来的全球气候协定中,应该包括生物炭这种技术。
埋藏生物炭还可以提高土壤肥力,因为其蜂窝状颗粒成为水分和肥料的储存库。英国东南地区的洛桑即将开始田间试验,评估生物炭对土壤结构和水分的好处。澳大利亚、美国和德国的实验已经显现出一些成果,特别是在其他土壤贫瘠的地区。
生物炭受到了关注气候变化人士的支持。宾根生物炭工厂设计工程师海尔马特·葛波尔(Helmut Gerber)表示,他设计的高温裂解设备,原本是为了解决污物灰烬堵塞常规锅炉的问题。
通常情况下,污水处理是温室气体的重要来源,废物经焚化(可产生更多排放)产生的粉灰用于建筑行业。在宾根,10%的污水流被输入试验性的高温裂解工厂,工厂用最少的氧气加热废物,分离出一氧化碳和甲烷,之后燃烧再为高温裂解过程提供热量。