1996年Waters公司推出了世界上首台商业化Q-TOF质谱,从那时起Waters就成为引领Q-TOF质谱发展的旗手。2007年Waters创造性地将行波离子淌度(T-Wave)嵌入质谱中,推出SYNAPT HDMS—一举获得了当年PITTCON金奖。从此质谱不仅可提供质量信息,而且可以根据离子的形态进行分离、分辨。加之在液相领域至今所向披靡的UPLC技术,Waters为使用者呈现出了一个由质量、形态、色谱构成的多维分析空间。SYNAPT已帮助科学家在蛋白质复合体四级结构、蛋白单体变化及聚合物分析等领域,在Cell、Nature等期刊发表诸多论文。
SYNAPT没有止步,它带来了越来越多的惊喜。首先是T-Wave与前后两个碰撞池结合的TriWave技术。这个巧妙的设计使Q-TOF质谱具备了三级质谱性能。更令人兴奋的是,此三级远非常见的三级方法:母离子在第一个碰撞池产生的碎片,可在之后的T-Wave迁移腔中根据形态分离,因此当碎片离子按照形态顺序依次进入第二个碰撞室后,最终产生的三级碎片不仅包含质量信息,而且蕴含了结构信息。这种被称为时间排列平行碎裂(TAP,TimeAligned Parallel Fragmentation)的三级质谱技术,在糖肽结构分析中,可巧妙地分别采集糖链及多肽的碎片信息,为蛋白质糖基化及其它化合物分析提供了全新的策略。
T-Wave还可以提高质谱信号强度,提升信噪比!使用两个T-Wave组成的离轴迁移腔被命名为Step-Wave。它在使分析离子“上一个台阶”进入质谱分析器的同时,让中性干扰物“下一个台阶”而远离质量分析器。因此采用Step-Wave的SYNAPT G2-S对痕量物质的分析具有了前所未有的分析能力。较前代产品,SYNAPT G2-S的信号检测强度提高了约30倍,信噪比提高了5-6倍,最低检测限也下探了一个数量级。灵敏度的显著提高、无与伦比的选择性和分析能力、以及离子淌度分离等多重优势,使SYNAPT G2-S能够以在低于任何其它高分辨率质谱仪的分析浓度条件下定性、定量分析物。HDMSE是T-Wave技术的又一创新应用,它使沃特世独有的MSE专利技术进一步升华。MSE通过碰撞池在低、高能量匀速高频切换,分别得到全部母离子与所有碎片离子信息。之后通过母离子与其碎片具有一致色谱行为的性质,进行碎片离子归属,从而得到所有母离子的二级碎片信息。MSE的优势在于它不仅采集了最全的离子信息,而且“完美”地记录了色谱数据。这对于分析物的定性和定量堪称绝佳的解决方案。
HDMSE技术的推出,进一步对色谱行为相近的分析物通过离子淌度区分,极大地改善了数据的信噪比,使定性结果更加准确(图2左)。使用MSE以及HDMSE采集多肽GVIFYESHGK二级图谱的对比实验中可以看到,在MSE数据中有多达254个碎片信号,其中大部分是干扰信号,如果这些信号都被用来检索,将可能影响鉴定的准确性;而通过HDMSE得到的潜在产物离子碎片仅有35个,也就是说绝大多数干扰信号都被去除了,这极大地提升了最终的鉴定可信度(图2右上)。更让人兴奋的是,HDMSE技术在对复杂体系蛋白鉴定的数量上,较MSE也有了近一倍的提升(图2右下),产生了质的飞跃。
配备MALDI离子源的SYNAPT G2-S还可进行MALDI Imaging实验。较常规的MALDI Imaging技术,通过T-Wave技术的使用,科学家可以得到更加丰富、可信的实验数据,因此得到了广泛的应用。此外,ETD(电子传递解离)等丰富的研究手段都可在SYNAPT G2-S上实现。SYNAPT G2-S还具有最广泛的离子源,包括:电喷雾(ESI)、大气压化学电离(APCI)、双电喷雾和APCi(ASCi)、大气压电离(APPI)、常压气相色谱法(APGC)、NanoFlowR(ESI)、基质辅助激光解吸(MALDI)、大气固体分析探头(ASAP)和微控UPLC(T RIZAIC UPLC)等。它还可与包括DESI(Prosalia)、DART(IonSense)、LDTD(Phytronix)和TriVersa nano Mate(Advion)源在内的诸多第三方离子源兼容。
SYNAPT G2-S质谱作为2011年Waters最新发布的尖端质谱,正在融入生命、材料、环境、食品、农业、中药等领域的研究与实践应用中。
图1
图2